在新选项卡中打开链接
  1. Copilot 答案
    VSEPR theory - Wikipedia

    There are groups of compounds where VSEPR fails to predict the correct geometry.
    The shapes of heavier Group 14 element alkyne analogues (RM≡MR, where M = Si, Ge, Sn or Pb) have been computed to be bent.
    One example of the AX2E2 geometry is molecular lithium oxide, Li2O, a linear rather than bent structure, which is ascribed to its bonds being essent…

    There are groups of compounds where VSEPR fails to predict the correct geometry.
    The shapes of heavier Group 14 element alkyne analogues (RM≡MR, where M = Si, Ge, Sn or Pb) have been computed to be bent.
    One example of the AX2E2 geometry is molecular lithium oxide, Li2O, a linear rather than bent structure, which is ascribed to its bonds being essentially ionic and the strong lithium-lithium repulsion that results. Another example is O(SiH3)2 with an Si–O–Si angle of 144.1°, which compares to the angles in Cl2O (110.9°), (CH3)2O (111.7°), and N(CH3)3 (110.9°). Gillespie and Robinson rationalize the Si–O–Si bond angle based on the observed ability of a ligand's lone pair to most greatly repel other electron pairs when the ligand electronegativity is greater than or equal to that of the central atom. In O(SiH3)2, the central atom is more electronegative, and the lone pairs are less localized and more weakly repulsive. The larger Si–O–Si bond angle results from this and strong ligand-ligand repulsion by the relatively large -SiH3 ligand. Burford et al showed through X-ray diffraction studies that Cl3Al–O–PCl3 has a lin…

    在 Wikipedia 上阅读更多信息

    Wikipedia

    Valence shell electron pair repulsion (VSEPR) theory (/ˈvɛspər, vəˈsɛpər/ VESP-ər, və-SEP-ər ) is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. It is also named the Gillespie-Nyholm theory after its two main developers, Ronald Gillespie and Ronald Nyholm.

    The premise of VSEPR is that the valence electron pairs surrounding an atom tend to repel each other. The greater the repulsion, the higher in energy (less stable) the molecule is. Therefore, the VSEPR-predicted molecular geometry of a molecule is the one that has as little of this repulsion as possible. Gillespie has emphasized that the electron-electron repulsion due to the Pauli exclusion principle is more important in determining molecular geometry than the electrostatic repulsion.

    The insights of VSEPR theory are derived from topological analysis of the electron density of molecules. Such quantum chemical topology (QCT) methods include the electron localization function (ELF) and the quantum theory of atoms in molecules (AIM or QTAIM).

    继续阅读

    The idea of a correlation between molecular geometry and number of valence electron pairs (both shared and unshared pairs) was originally proposed in 1939 by Ryutaro Tsuchida in Japan, and was independently presented in a Bakerian Lecture in 1940 by Nevil Sidgwick and Herbert Powell of the University of Oxford. In 1957, Ronald Gillespie and Ronald Sydney Nyholm of University College London refined this concept into a more detailed theory, capable of choosing between various alternative geometries.

    继续阅读

    VSEPR theory is used to predict the arrangement of electron pairs around central atoms in molecules, especially simple and symmetric molecules. A central atom is defined in this theory as an atom which is bonded to two or more other atoms, while a terminal atom is bonded to only one other atom. For example in the molecule methyl isocyanate (H3C-N=C=O), the two carbons and one nitrogen are central atoms, and the three hydrogens and one oxygen are terminal atoms. The geometry of the central atoms and their non-bonding electron pairs in turn determine the geometry of the larger whole molecule.

    The number of electron pairs in the valence shell of a central atom is determined after drawing the Lewis structure of the molecule, and expanding it to show all bonding groups and lone pairs of electrons. In VSEPR theory, a double bond or triple bond is treated as a single bonding group. The sum of the number of atoms bonded to a central atom and the number of lone pairs formed by its nonbonding valence electrons is known as the central atom's steric number.

    The electron pairs (or groups if multiple bonds are present) are assumed to lie on the surface of a sphere centered on the central atom and tend to occupy positions that minimize their mutual repulsions by maximizing the distance between them. The number of electron pairs (or groups), therefore, determines the overall geometry that they will adopt. For example, when there are two electron pairs surrounding the central atom, their mutual repulsion is minimal when they lie at opposite poles of the sphere. Therefore, the central atom is predicted to adopt a linear geometry. If there are 3 electron pairs surrounding the central atom, their repulsion is minimized by placing them at the vertices of an equilateral triangle centered on the atom. Therefore, the predicted geometry is trigonal. Likewise, for 4 electron pairs, the optimal arrangement is tetrahedral.

    As a tool in predicting the geometry adopted with a given number of electron pairs, an often used physical demonstration of the principle of minimal electron pair repulsion utilizes inflated balloons. Through handling, balloons acquire a slight surface electrostatic charge that results in the adoption of roughly the same geometries when they are tied together at their stems as the corresponding number of electron pairs. For example, five balloons tied together adopt the trigonal bipyramidal geometry, just as do the five bonding pairs of a PCl5 molecule.
    The steric number of a central atom in a molecule is the number of atoms bonded to that central atom, called its coordination number, plus the number of lone pairs of valence electrons on the central atom. In the molecule SF4, for example, the central sulfur atom has four ligands; the coordination number of …

    在 Wikipedia 上阅读更多信息

    继续阅读

    The "AXE method" of electron counting is commonly used when applying the VSEPR theory. The electron pairs around a central atom are represented by a formula AXmEn, where A represents the central atom and always has an implied subscript one. Each X represents a ligand (an atom bonded to A). Each E represents a lone pair of electrons on the central atom. The total number of X and E is known as the steric number. For example in a molecule AX3E2, the atom A has a steric number of 5.

    When the substituent (X) atoms are not all the same, the geometry is still approximately valid, but the bond angles may be slightly different from the ones where all the outside atoms are the same. For example, the double-bond carbons in alkenes like C2H4 are AX3E0, but the bond angles are not all exactly 120°. Likewise, SOCl2 is AX3E1, but because the X substituents are not identical, the X–A–X angles are not all equal.

    Based on the steric number and distribution of Xs and Es, VSEPR theory makes the predictions in the following tables.
    For main-group elements, there are stereochemically active lone pairs E whose number can vary between 0 to 3. Note that the geometries are named according to the atomic positions only and not the electron arrangement. For example, the description of AX2E1 as a bent molecule means that the three atoms AX2 are not in one straight line, although the lone pair helps to determine the geometry.
    The lone pairs on transition metal atoms are usually stereochemically inactive, meaning that their presence does not change the molecular geometry. For example, the hexaaquo complexes M(H2O)6 are all octahedral for M = V , Mn , Co , Ni and Zn , despite the fact that the electronic configurations of the central metal ion are d , d , d , d and d respectively. The Kepert model ignores all lone pairs on transition metal atoms, so that the geometry around all such atoms corresponds to the VSEPR geometry for AXn with 0 lone pairs E. This is often written MLn, where M = metal and L = ligand. The Kepert model predicts the following geometries for coordination numbers of 2 through 9:

    继续阅读